Synthesis of Functionalized Cinnamaldehyde Derivatives by an Oxidative Heck Reaction and Their Use as Starting Materials for Preparation of Mycobacterium tuberculosis 1-Deoxy-d-xylulose-5-phosphate Reductoisomerase Inhibitors
نویسندگان
چکیده
Cinnamaldehyde derivatives were synthesized in good to excellent yields in one step by a mild and selective, base-free palladium(II)-catalyzed oxidative Heck reaction starting from acrolein and various arylboronic acids. Prepared α,β-unsaturated aldehydes were used for synthesis of novel α-aryl substituted fosmidomycin analogues, which were evaluated for their inhibition of Mycobacterium tuberculosis 1-deoxy-D-xylulose 5-phosphate reductoisomerase. IC(50) values between 0.8 and 27.3 μM were measured. The best compound showed activity comparable to that of the most potent previously reported α-aryl substituted fosmidomycin-class inhibitor.
منابع مشابه
Design, synthesis, and X-ray crystallographic studies of α-aryl substituted fosmidomycin analogues as inhibitors of Mycobacterium tuberculosis 1-deoxy-D-xylulose 5-phosphate reductoisomerase.
The natural antibiotic fosmidomycin acts via inhibition of 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), an essential enzyme in the non-mevalonate pathway of isoprenoid biosynthesis. Fosmidomycin is active on Mycobacterium tuberculosis DXR (MtDXR), but it lacks antibacterial activity probably because of poor uptake. α-Aryl substituted fosmidomycin analogues have more favorable physicoc...
متن کاملStructures of Mycobacterium tuberculosis 1-deoxy-D-xylulose-5-phosphate reductoisomerase provide new insights into catalysis.
Isopentenyl diphosphate is the precursor of various isoprenoids that are essential to all living organisms. It is produced by the mevalonate pathway in humans but by an alternate route in plants, protozoa, and many bacteria. 1-deoxy-D-xylulose-5-phosphate reductoisomerase catalyzes the second step of this non-mevalonate pathway, which involves an NADPH-dependent rearrangement and reduction of 1...
متن کامل1-Deoxy-D-xylulose 5-phosphate reductoisomerase (IspC) from Mycobacterium tuberculosis: towards understanding mycobacterial resistance to fosmidomycin.
1-Deoxy-d-xylulose 5-phosphate reductoisomerase (IspC) catalyzes the first committed step in the mevalonate-independent isopentenyl diphosphate biosynthetic pathway and is a potential drug target in some pathogenic bacteria. The antibiotic fosmidomycin has been shown to inhibit IspC in a number of organisms and is active against most gram-negative bacteria but not gram positives, including Myco...
متن کاملFrom Zn to Mn: The Study of Novel Manganese-binding Groups in the Search for New Drugs against Tuberculosis
In most eubacteria, apicomplexans, and most plants, including the causal agents for diseases such as malaria, leprosy, and tuberculosis, the methylerythritol phosphate pathway is the route for the biosynthesis of the C(5) precursors to the essential isoprenoid class of compounds. Owing to their absence in humans, the enzymes of the methylerythritol phosphate pathway have become attractive targe...
متن کاملStructure-guided design and biosynthesis of a novel FR-900098 analogue as a potent Plasmodium falciparum 1-deoxy-D-xylulose-5-phosphate reductoisomerase (Dxr) inhibitor.
We report here the enzymatic biosynthesis of FR-900098 analogues and establish an in vivo platform for the biosynthesis of an N-propionyl derivative FR-900098P. FR-900098P is found to be a significantly more potent inhibitor of Plasmodium falciparum 1-deoxy-D-xylulose 5-phosphate reductoisomerase (PfDxr) than the parent compound, and thus a more promising antimalarial drug candidate.
متن کامل